Feasible-Sets: 1D and the general phase problem

Subtitle:

If the solution is not unique...

should we go fishing?

L. D. Marks

Department of Materials Science & Engineering

Northwestern University

Overview & Acknowledgements

- Feasible-set approach to crystallographic problems
 - Eric Landree, Wharton Sinkler & Erman Bengu ++
- 1D Josephson junction problem Mike Carmody & Karl Merkle
- 1D x-ray reflectivity problem Erman Bengu & Monica Salud
- 1D/3D Surface Phase Problem Collaborators (data): Robert Feidenhans'l, Joerg Zegenhagen, Antoine Barbier,....

Basics

- We know the amplitudes
- We want to find the phases
- Problem is insolvable without additional information constraints
- Use an iterative approach

The importance of phase information

Suzy

Correct Modulus Random Phases

Correct Phase Random Modulus

Role of error in phases (degrees)

We would like to find the phases exactly, but we don't have to

Algorithm Overview (Gerschberg-Saxton)

Successive Projections

- Iterate between projections
- Other variants
 possible (see
 Combettes,
 Advances in
 Imaging and
 Electron Physics
 95, 155-270, 1996)

Over-relaxed Projections

- Iterate between projections
- Overshoot (deliberately)
- Converges faster
- Sometimes better solutions

Orthogonal Projections

Example: Fourier Difference Map

- \blacksquare We know all the moduli, |U(k)|
- Suppose we know part of the structure, $U_a(k) = |U_a(k)| \exp(i\phi_a(k))$
- Find the additional component D(k) such that

 $|U_a(k) + D(k)| = |U(k)|$

- Minimize (orthogonal projection): $|D(k)|^2 \lambda \{ |U_a(k)+D(k)|-|U(k)| \}$
- Solution $D(k) = \exp(i\phi_a(k))\{|U(k)|-|U_a(k)|\}$ Conventional Fourier Difference Map

Algorithm Overview (Gerschberg-Saxton)

Where do constraints come from

- Physical nature of experiment
 - Limited beam or object size
- Physical nature of scattering
 - Atomic scattering
- Statistics & Probability
 - Minimum Information/Bias = Maximum Entropy

The \$64,000 question

- Consider the points which obey a constraint as a set
- A set is convex if any point between two members is also a member
- Amplitude measurements do not form a convex set

Types of Constraints

- Convex highly convergent
 - Multiple convex constraints are unique
- Non-convex weakly convergent
 - Multiple non-convex constraints may not be unique

Multiple non-convex constraints

Consider the two sets "N" and "U"

Overall Convex

Overall Non-Convex

Simplest Constraint: Limited Object

- 1D Continuous, overall problem is non-unique
- 1D Non-continuous, may be unique
- nD Continuous, n≥2, overall unique

(Provided that the Patterson Function is limited)

Other Constraints

Convex

Non-Convex

Positivity (weak)	Presence of Atoms
Atoms at given positions	Bond Lengths
Least bias (MaxEnt)	Interference
	$A(k)= B(k)+Known(k) ^2$
Intensities & errors $\equiv \chi^2$	Anti-bumping
Statistics (e.g. Σ_2)	Bond angles
Support for gradient	
Symmetry	

Atomistic Constraints

Atomistic Constraint

- Simple case, Unitary Sayre Equation
 - $-F(k) = \Sigma_l f(k) \exp(2\pi i k.r_l)$
- Divide by N, #atoms & f(k), atomic scattering factors
 - $U(k) = (1/N) \sum_{l} \exp(2\pi i k.r_{l})$; $u(r) = (1/N) \sum_{l} \delta(r-r_{l})$
 - $u(r) = Nu(r)^2$

Classic Direct Methods

Consider as an iteration

$$\begin{array}{ccc} U_n(k) & \longrightarrow & u_n(r) \\ & & \downarrow & \text{Constraint} \\ U'(k) & \longleftarrow & u_n^2(k) \end{array}$$

- Note the similarities
 - Tangent Formula
 = Orthogonal Projection
 - Real space operator, effectively an eigenfunction (fixed point) method

Null Hypothesis: Minimum Bias/Information

- Consider most probable distribution of phases for random atoms
 - Central-Limit Theorem
 - Cochran Distribution
 - Bregman Projection using xlogx
 - ➤ Maximum entropy or Kullback-Leibler metric

Convex constraints

Algorithm Overview (Gerschberg-Saxton)

Multiply-Connected Feasible Set

Hypothesis (5/18/2001)

- Think about the probability near a solution
- Apply classic D.M. statistics to $U_{n+1}(k)-U_n(k)$
- Use central-limit theorem
 - $P(|U(k)|\cos(\Delta\phi))\sim Cexp\{N|U(k)|^2\cos(\Delta\phi)\}$
 - $-\Delta \phi = \text{phase error}$
- Needs verification but correllates with results!

Crystallographic methodology

Overall Non-Convex

Overall Unique

Addition of additional convex constraints tends to give a unique solution

Structure Completion: add additional constraints as the phases become known

1D Support Constraint

- "Conventional Wisdom"
 - In 1D, overall problem is non-unique

1D-Josephson Junction Problem

Physica C <u>315</u>, 145 (1999); Journal of Applied Physics 87, 2454 (2000); Interface Science 8, 231 (2000); PRB submitted

Generate a compact support

Create a 1-D finite object by micropatterning

Constraints on Real-Space Form

- For simple (low-angle) boundaries
 - Boundary is finite
 - Current is positive
 - Current is less than a known maximum (weak)
- For 45 degree boundaries
 - Boundary is finite
 - Current may be positive or negative

Method

- Standard "HIO", i.e. successive orthogonal projections
- FOM = L1 or L2 mean (does not seem to matter *here*)
- Genetic search to find feasible set of solutions
 - For M initial trials, best N form the feasible set

Solutions are quasi-unique

Experimental Data: J(x) > 0

24 ° YBCO Bicrystal, 5 µm Wide Boundary

Verification via changing Temperature

Experimental Data: 5µm boundary

45° boundary: $-J_c < J(x) < J_c$ Use a discontinuous support

Cut grooves with a FIB

N.B.: support is smaller than that which is known to be unique

1D- X-ray Reflectivity Problem

(Kinematical Approximation)

Bengu, Salud & Marks, PRB, in press

Compact Support for $d\rho(z)/dz$

Quasi-Unique Solutions

Real space (y axis offset)

FOM versus Original (CFOM)

Model Data

Experimental Data

* J.S. Pedersen (1992), J. Appl. Cryst., 25, 129.

1D/3D-Surface Problem

- Incomplete set of measurements
 - **20-30%** of total
- Atomistic constraints
- Periodic in x,y; compact support constraint along z

SrTiO₃ (001) 2x1

Basics: Surface Reviews and Letters <u>5</u>, 1087 (1998); Acta Crystallographica <u>A55</u>, 601 (1999); Physical Review B <u>60</u>, 2771 (1999)

3D-Support Constraint

- Displacements decay as $(\alpha+z)\exp(-qz)$ into bulk¹
- Consider only non-bulk spots
- Real space constraint
 - $\rho(z)=0$ away from surface
- Convex constraint

¹Biharmonic expansion of strain field, Surface Science <u>294</u>, 324 (1993)

Why we don't need all the data

- The constraints, e.g. support & atomistic, generate both amplitude & phase estimates.
- The amplitudes and phases of the unmeasured points must also be consistent with the constraints.
- Hence it is often (not always) possible to recover to a good approximation the "missing cone" values

Unmeasured Reflections

Recovery of Unmeasured Reflections

Implimentation

- 300-1000 known moduli typically
- Two weighted parallel "atomistic" operators
- Over-relaxation & extrapolation
- Some "Statistical" constraints (set large U(k) first)
- L1 FOM (much better than L2)
- Genetic Algorithm global search 1000 to 10000 initial phase sets (1-4 hrs on an HP workstation)
- About 20 3D FFT's per starting point (10 iterations)
- Projection onto known atomic positions (as they become available)

Overall methodology

- Solve simplest problem with no prior information first
- Add additional constraints as analysis progresses
 - Pruning of unrealistic solutions
 - Acceptance of "correct" elements (e.g. atoms)
- Tends (hopefully) to a unique solution

Many subtle points

- Consider the FOM = $|F_{true} F_{est}|^2$
- Error Gaussian

$$-F_{est} = F_{true} + noise$$

■ F_{true} large

$$- \langle F_{est} \rangle \sim \langle F_{true} \rangle$$

 \blacksquare F_{true} small

-
$$<$$
F_{est} $> \sim$ noise
 $>>$ F_{true}
(similar to SIM weights)

Role of "background" compensation

Si (7x7) in p3m1 without compensation

Si (7x7) in p3m1 with compensation

Experimental Data

Note: in p6mm compensation is not needed

NiO (111) 2x2 (p3m1)

Experimental Data: Solution is quasi-unique in 3D (two branches in 2D)

Surface Science <u>470</u>, 1-2, 1 (2000)

InSb c8x2

Experimental Data

Quasi-unique in 2D & 3D

Physical Review Letters 86, 3586 (2001)

Conclusions

- We don't need a formally exact recovery of the phases, only an approximate one
- We can generalize to include atomistic and other constraints
- Many 1D problems are quasi-unique
- Many 3D crystallographic problems are quasi-unique